String Indexing for Patterns with Wildcards

Philip Bille1, Inge Li Gørtz1, Hjalte Wedel Vildhøj1, and Søren Vind1

1Technical University of Denmark, DTU Informatics

SWAT 2012, Helsinki
July 6, 2012
String Indexing for Patterns with Wildcards

Problem Definition

Build an index for a string $t \in \Sigma^*$, that, given a query pattern p, quickly can report where p occurs in t.

$$p = p_0 \ast p_1 \ast \ldots \ast p_j$$

Example

$$t = \text{combinatorialpatternmatching}$$

$$p = \ast \text{at}\ast\ast\ast\text{n}$$
Two Simple Solutions

Suffix Tree Search

\[p = \texttt{*na*} \]

\[t = \texttt{bananas} \]
Two Simple Solutions

Suffix Tree Search

\[p = \ast \text{na}\ast \]

\[t = \text{bananas} \]
Two Simple Solutions

Suffix Tree Search

\[p = \ast \text{na}\ast \]

\[t = \text{bananas} \]
Two Simple Solutions

Suffix Tree Search

\[p = *na* \]

\[t = bananas \]
Two Simple Solutions

Suffix Tree Search

\[p = *\text{na}* \]

\[t = \text{bananas} \]
Two Simple Solutions

Suffix Tree Search

\[p = *na* \]

\[t = \text{bananas} \]
Two Simple Solutions

Suffix Tree Search

\[p = *na* \]

\[t = bananas \]

Time: \(O(\sigma^j m + \text{occ}) \)

Space: \(O(n) \)
Two Simple Solutions

Simple Linear Time Index

\[\text{Time: } O(m + j + \text{occ}) \]
\[\text{Space: } O(nk + 1) \]
Two Simple Solutions

Simple Linear Time Index

Time: $O(m + j + \text{occ})$
Space: $O(nk + 1)$
Two Simple Solutions

Simple Linear Time Index

Time: $O(m + j + \text{occ})$

Space: $O(nk + 1)$
Two Simple Solutions

Simple Linear Time Index

```
Time: \(O(m + j + \text{occ})\)
Space: \(O(nk + 1)\)
```
Two Simple Solutions

Simple Linear Time Index

Time: $O(m + j + \text{occ})$
Space: $O(nk + 1)$
Two Simple Solutions

Simple Linear Time Index

bananas^2

$p = *na*$
Two Simple Solutions

Simple Linear Time Index

$P = *na*$

Time: $O(m + j + occ)$
Space: $O(n^{k+1})$
LCP Queries

Let C_i be a set of substrings of the indexed string. Consider the following query on the compressed trie $T(C_i)$ storing the strings in C_i.

\[\text{LCP}(x, i, \ell): \text{The location where the search for } x \in \Sigma^* \text{ stops when starting in location } \ell \in T(C_i). \]

Example: $x = \text{angry}$ and $C_i = \text{suff(bananas)}$.

The Longest Common Prefix Data Structure

An Application

Search for subpatterns in the suffix tree using the LCP data structure:

- Build the LCP data structure for the suffix tree.
- Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - Branch on a wildcard as in the simple suffix tree solution.

The Longest Common Prefix Data Structure

An Application

Search for subpatterns in the suffix tree using the LCP data structure:

- Build the LCP data structure for the suffix tree.
- Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

- $O(\log \log n)$ time and $O(n \log n)$ space.
 - Index with query time $O(m + \sigma^j \log \log n + \text{occ})$ and space $O(n \log n)$.

- We show that you can also do $O(\log n)$ time and $O(n)$ space.
 - Index with query time $O(m + \sigma^j \log n + \text{occ})$ and space $O(n)$.

The Longest Common Prefix Data Structure

An Application

Search for subpatterns in the suffix tree using the LCP data structure:

- Build the LCP data structure for the suffix tree.
- Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

- \(O(\log \log n) \) time and \(O(n \log n) \) space.
 \(\Rightarrow \) Index with query time \(O(m + \sigma^j \log \log n + \text{occ}) \) and space \(O(n \log n) \).

- We show that you can also do \(O(\log n) \) time and \(O(n) \) space.
 \(\Rightarrow \) Index with query time \(O(m + \sigma^j \log n + \text{occ}) \) and space \(O(n) \).

Solution 1

An Unbounded Wildcard Index
Using Linear Space

Query Time: \(O(m + \sigma^j \log \log n + \text{occ}) \)
Space Usage: \(O(n) \)
Definition:

- A bottom tree is a maximal subtree with at most $\log n$ leaves.
- Vertices not in a bottom tree constitute the top tree.

Example: A tree with $n = 16$ leaves ($\log n = 4$).
An Unbounded Wildcard Index Using Linear Space

ART Decomposition

Definition:
- A *bottom tree* is a maximal subtree with at most $\log n$ leaves.
- Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with $n = 16$ leaves ($\log n = 4$).

B_1

$\text{2. S. Alstrup, T. Husfeldt, and T. Rauhe}$

Definition:

- A bottom tree is a maximal subtree with at most $\log n$ leaves.
- Vertices not in a bottom tree constitute the top tree.

Example: A tree with $n = 16$ leaves ($\log n = 4$).

2. S. Alstrup, T. Husfeldt, and T. Rauhe
An Unbounded Wildcard Index Using Linear Space

ART Decomposition

Definition:
- A *bottom tree* is a maximal subtree with at most $\log n$ leaves.
- Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with $n = 16$ leaves ($\log n = 4$).

Property: The top tree has $O\left(\frac{n}{\log n}\right)$ leaves.

2 S. Alstrup, T. Husfeldt, and T. Rauhe
Obtaining the Index

- Use the ART decomposition to decompose the suffix tree into a number of logarithmic sized bottom trees and a single top tree containing $O\left(\frac{n}{\log n}\right)$ leaves.
- Store the top and bottom trees in LCP data structure.
- On the top tree T': Add support for $O(\log \log n)$ time LCP queries using the method by Cole et al.\(^3\)
 - This requires space $O(|T'| \log |T'|) = O\left(\frac{n}{\log n} \log\left(\frac{n}{\log n}\right)\right) = O(n)$.
- On the bottom trees $T(C_1), \ldots, T(C_q)$: Add support for $O(\log n)$ time LCP queries using our new method.
 - This requires $O\left(\sum_{i=1}^{q} |C_i|\right) = O(n)$ space.
 - The query time becomes $O(\log |C_i|) = O(\log \log n)$.

This gives an unbounded wildcard index using $O(n)$ space with query time $O(m + \sigma^j \log \log n + \text{occ})$.

\(^3\) R. Cole, L. Gottlieb, and M. Lewenstein.
Solution 2

A Time-Space Trade-Off for k-Bounded Wildcard Indexes

Query Time: $O(m + \beta^j \log \log n + occ)$

Space Usage: $O(n \log_{\beta}^{k-1}(n) \log n)$
General Idea

Reduce the branching factor of the suffix tree search from σ to β by creating wildcard trees. Query time: $O(m + \beta^j \log \log n + \text{occ})$ when using the LCP data structure.
A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from σ to β by creating wildcard trees. Query time: $O(m + \beta^j \log \log n + occ)$ when using the LCP data structure.
General Idea

Reduce the branching factor of the suffix tree search from σ to β by creating wildcard trees. Query time: $O(m + \beta^j \log \log n + \text{occ})$ when using the LCP data structure.
A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from σ to β by creating wildcard trees. Query time: $O(m + \beta^j \log \log n + \text{occ})$ when using the LCP data structure.
Each string in $T(C)$ gives rise to at most $\text{lightdepth}(x) \leq \log_\beta n$ strings on the next level. So the number of strings in a k-level index is at most

$$\sum_{i=0}^{k} n \log^i_\beta n = O(n \log^k_\beta n) .$$

By using the LCP data structure to support LCP queries on every subtrie, we obtain a k-bounded wildcard index with query time $O(m + \beta^j \log \log n + \text{occ})$ using space $O(n \log^{k-1}_\beta (n) \log n)$.
Solution 3
A k-Bounded Wildcard Index with Linear Query Time

Query Time: $O(m + j + \text{occ})$
Space Usage: $O(n \sigma k^2 \log^k \log n)$
A \(k \)-Bounded Wildcard Index with Linear Query Time

General Idea

Consider the previously described unbounded wildcard index \(\mathcal{A} \) with

- linear space usage, and
- query time \(O(m + \sigma^j \log \log n + \text{occ}) \).

Suppose the pattern is restricted to contain a maximum of \(k \) wildcards.

- If \(m + j > \sigma^k \log \log n > \sigma^j \log \log n \), (i.e., the query pattern is long) the query time becomes linear: \(O(m + j + \text{occ}) \).
- If \(m + j \leq \sigma^k \log \log n \), we query a special wildcard index \(\mathcal{B} \) for short patterns with query time \(O(m + j + \text{occ}) \).

In any case the query time is \(O(m + j + \text{occ}) \). The space used by the index is \(O(|\mathcal{A}| + |\mathcal{B}|) \).
A k-Bounded Wildcard Index with Linear Query Time

A Special Index for Patterns Shorter than $\sigma^k \log \log n$

$G = \sigma^k \log \log n$

$T^k_1(\operatorname{pref}_G(C))$ contains at most n strings. Consider a string x in one of the subtries. At most $|x| \leq G$ suffixes of x appear in tries on the next level. Consequently, the number of strings in $T^k_1(\operatorname{pref}_G(C))$ is bounded by

$$\sum_{i=0}^{k} nG^i = O(n(\sigma^k \log \log n)^k) = O(n\sigma^{k^2} \log^k \log n).$$

Result: A k-bounded wildcard index with linear query time $O(m + j + \text{occ})$ using space $O(n\sigma^{k^2} \log^k \log n)$.
Conclusions

- Three new solutions for string indexing for patterns with wildcards:
 - The fastest linear space index.
 - A trade-off for k-bounded wildcard indexes.
 - The first non-trivial linear time index.

- All solutions generalize to string indexing for patterns with variable length gaps.
Conclusions

- Three new solutions for string indexing for patterns with wildcards:
 - The fastest linear space index.
 - A trade-off for k-bounded wildcard indexes.
 - The first non-trivial linear time index.

- All solutions generalize to string indexing for patterns with variable length gaps.

Thank you!