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Geometric Shape Matchingp g
• Consider geometric shapes
to be composed of a number 
f b i bjof basic objects 

such as points line segments triangles

• How similar are two 
geometric shapes?

• Choice of distance measure
• Full or partial matching• Full or partial matching
• Exact or approximate matching
• Transformations (translations, rotations, scalings)( , , g )



Shape Matching - Applications

• Character Recognition
• Fingerprint Identification
• Molecule Docking, Drug Designg, g g
• Image Interpretation and Segmentation
• Quality Control of WorkpiecesQuality Control of Workpieces
• Robotics
• Pose Determination of Satellites• Pose Determination of Satellites
• Puzzling
• . . .



Distance Measures
• Directed Hausdorff distance 

δ→(A B) i || b || ABδ (A,B) = max min || a-b ||

• Undirected Hausdorff-distance 
→ →

AB

δ→(B,A)
δ→(A B)

a ∈A  b∈B

δ(A,B) = max (δ→(A,B) , δ→(B,A) )

But:

δ (A,B)

But:
• Small Hausdorff distance

• When considered as curves the 
distance should be large

• The Fréchet distance is well-suited to 
i hcompare continuous shapes.



Fréchet Distance for Curves

δF(f,g) =      inf          max    ||f(t)-g(σ(t))||
σ:[0,1]   [0,1]   t ∈[0,1]

f,g: [0,1] → R2

[ , ] [ , ] [ , ]

where α and β range over continuous monotone increasing 
reparameterizations only. • Man and dog walk on p y g

one curve each

• They hold each other at 
a  leash

• They are only allowed f

to go forward

• δF is the minimal 
ibl l h l th

g

possible leash length
[F06] M. Fréchet, Sur quelques points de calcul fonctionel, Rendiconti del Circolo Mathematico di Palermo 22: 1-74, 1906.



Free Space Diagram
g
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• Fε(f,g) = { (s,t)∈[0,1]2 | || f(s) - g(t)|| ≤ ε } white points
free space of f and g

f

p g



Free Space Diagram
g

αg

βf

ff
• Fε(f,g) = { (s,t)∈[0,1]2 | || f(s) - g(t)|| ≤ ε } white points

free space of f and gp g
• δF(f,g)  ≤ ε iff there is a monotone path in the free space from 

(0,0) to (1,1)
• Can be decided using DP in O(mn) time  [AG95]

[AG95] H. Alt, M. Godau, Computing the Fréchet distance between two polygonal curves, IJCGA 5: 75-91, 1995. 



Fréchet Distance for Surfaces
• Given: Two surfaces

P,Q: [0,1]2→ Rd

• The Fréchet distance is defined as:
P Q

δF(P,Q) =     inf       max ||t-σ(t)||
σ:P→Q

σ homeomorphism
t∈P

• Is δF (P,Q) = δF (∂P, ∂Q)? 

No: δF (∂P, ∂Q) ≈ w/2
δ (P Q) h/2

h
δF (P,Q) ≈ h/2

w

[BBW08] K. Buchin, M. Buchin, C. Wenk, Computing the Fréchet Distance Between Simple Polygons, CGTA 41: 2-20, 2008.



Fréchet Distance for Surfaces

• For piecewise linear surfaces:

• Computing δF is NP-hard, even when one surface is a triangle, 
or when both surfaces are polygons with holes or terrains

• δF is upper-semi-computable; it is unknown if it is computable

[G98]
[BBS10]
[AB09] δF is upper semi computable; it is unknown if it is computable

• For simple polygons:

• δF can be computed in polynomial time[BBW08]

• Partial δF can be decided in polynomial time

• For folded polygons:

[SW12]

[C S 11] • δF can be approximated in polynomial time

[BBS10] K. Buchin, M. Buchin, A. Schulz, Fréchet distance for surfaces: Some simple hard cases, ESA: 63-74, 2010.
[SW12] J. Sherette, C. Wenk, Computing the Partial Fréchet Distance Between Polygons, SWAT, 2012.
[CDHSW11] A F Cook IV A Driemel S Har Peled J Sherette C Wenk Computing the Fréchet Folded Polygons WADS 2011

[CDHSW11]

[BBW08] K. Buchin, M. Buchin, C. Wenk, Computing the Fréchet Distance Between Simple Polygons, CGTA 41: 2-20, 2008.
[G98] M. Godau, On the complexity of measuring the similarity…, Dissertation, Freie Universität Berlin,  1998.
[AB09] H. Alt, M. Buchin, Can we compute the similarity between surfaces?, D&CG, to appear.

[CDHSW11] A.F.Cook IV, A. Driemel, S. Har-Peled, J. Sherette, C. Wenk, Computing the Fréchet….Folded Polygons,WADS, 2011.



Partial Fréchet Distance
• Given: Two simple polygons P, Q (coplanar, triangulated), 

and some ε>0.  

• Task: Decide whether there exists a simple polygon R ⊆ Q 
such that δF(P,R) ≤ ε .

• P⊆Q
⇒ R=P, ε=0

• P∩Q = ∅
⇒ Similar to proj-
ecting P to ∂Q

• Points in P∩Q are not 
mapped straight down

M i f i iecting P to ∂Q • Mapping of points is 
not independent from 
other points



Approach for Fréchet Distance 
b t Si l P lbetween Simple Polygons

P Q
a’

c’Restrict the homeomorphisms: 
Map diagonals in P only to

For ε>0, find homeom. such that:

a

b’

c

σb

Map diagonals in P only to
shortest paths in Q. 

For ε 0, find homeom. such that: 

1. δF(∂P,∂Q) ≤ ε 
(specifies mapping for

2. Every diagonal D in P has 
distance ≤ ε to corresponding

diagonal endpoints) shortest path in Q

Map boundary & check diagonals: 
Comp te combinatoriall eq i alent mappings from ∂P to ∂Q

This yields a polynomial time algorithm

Compute combinatorially equivalent mappings from ∂P to ∂Q, 
that also ensure small δF between diagonals and shortest paths  

[BBW08] K. Buchin, M. Buchin, C. Wenk, Computing the Fréchet Distance Between Simple Polygons, CGTA 41: 2-20, 2008.

This yields a polynomial-time algorithm.



(Double) Free Space Diagram

• Free space diagram: ∂P×∂QFree space diagram: ∂P ∂Q 
• Boundary mapping from  ∂P to ∂Q  corresponds to a monotone 

path from bottom to top (that maps all of P).



Approach for Partial Fréchet Distance 
b t Si l P lbetween Simple Polygons

• Since we have to find R⊆Q, the boundary of R is not known.
⇒ Cannot just map boundaries anymore⇒ Cannot just map boundaries anymore.

• We extend simple polygons approach in a different way:
1 Map boundary & check diagonals:1. Map boundary & check diagonals: 
Compute combinatorially equivalent mappings from ∂P to ∂Q 
some closed curve in Q, that also ensure small δF between Q F
diagonals and shortest paths .
⇒ (Q,ε)-valid set of neighborhoods 
2 Construct R from (Q ε) valid set2. Construct R from (Q,ε)-valid set 
Prove that a (Q,ε)-valid set of neighborhoods always contains a 
valid simple polygon R⊆Qp p yg ⊆Q



3D Free Space Diagram

• Free space diagram: ∂P×Q 
• Sequence of slices p ×Q• Sequence of slices pi×Q 
• Boundary mapping from  ∂P to closed curve in Q corresponds to a 

monotone path from first slice to last slice.
• Note: Path need only be monotone along P.



Reachability
Pair of adjacent slices in 
free space diagram:

Scenario in Q:

i h bl f iff δ ( ( ))• a2 is reachable from a1 iff δF(p3p4, π(a1,a2)) ≤ ε, 
where π(a1,a2) is the shortest path in Q between a1 and a2. 

• a2 is reachable from a1, but a3 is not.2 1, 3



Neighborhoods

• ε-disk Dε(p3). 
• Points in Dε(p3)∩Q can be 

d t

• Neighborhood of pi: 
Maximal connected subset of 
D (p )∩Qmapped to p3. Dε(pi)∩Q



Propagate Reachability
Pair of adjacent slices in 
free space diagram:

Scenario in Q:

N4

N3

i h bl f iff δ ( ( ))

N3

• a2 is reachable from a1 iff δF(p3p4, π(a1,a2)) ≤ ε, 
where π(a1,a2) is the shortest path in Q between a1 and a2. 

• All points in one neighborhood are reachable from all points in p g p
another neighborhood, if there exists one reachable pair of points.

• Compute reachability between two neighborhoods in O(n) time.



Algorithm: Neighborhoods

• Each slice contains at most 
O(n) neighborhoods per 
pointpoint.

• There are O(n2) pairs of 
neighborhoods to test g
reachability between, for 
each pair of slices.



Algorithm: Neighborhoods

• There are O(m) slices, 
where m=|P|

• We can compute and• We can compute and 
propagate reachability 
through free space diagram g p g
in O(n3 m) time

• ⇒ Test whether a reachable 
th i t d t tpath exists, and construct 

valid set of neighborhoods, 
in polynomial time.p y



Slight Modification
• So far we have only mapped ∂P, 

but we have not considered the 
• Modify algorithm, by merging 

slices in a different order:
diagonals of P yet. • Locally from left to right

• Merge in diagonal-nesting-
orderorder



Approach for Partial Fréchet Distance 
b t Si l P lbetween Simple Polygons

• Since we have to find R⊆Q, the boundary of R is not known.
⇒ Simply mapping boundaries does not work⇒ Simply mapping boundaries does not work.

• We extend simple polygons approach in a different way:
1 Map boundary & check diagonals:1. Map boundary & check diagonals: 
Compute combinatorially equivalent mappings from ∂P to ∂Q 
some closed curve in Q, that also ensure small δF between Q F
diagonals and shortest paths .
⇒ (Q,ε)-valid set of neighborhoods 
2 Construct R from (Q ε) valid set2. Construct R from (Q,ε)-valid set 
Prove that a (Q,ε)-valid set of neighborhoods always contains a 
valid simple polygon R⊆Qp p yg ⊆Q



Finding R
• A valid set of neighborhoods
• We want to compute a simpleWe w o co pu e s p e

polygon R that maps every pi to 
a point in its associated 
neighborhood.neighborhood.



Finding R
• We iteratively construct R by 

mapping each pi to a point in its 
associated neighborhood.

• At each iteration:
• We show that the points can• We show that the points can 

be mapped to form a simple 
polygon.
W ll i i t• We allow remapping points  
within their neighborhood.

• By properties of the 
neighborhoods, δF stays ≤ ε



Finding R
• Initially, choose  one triangle in P.
• Map each point a in its associated p e c po s ssoc ed

neighborhood Na.
• In each iterative step, add points 

which are connected to alreadywhich are connected to already 
mapped points.

• If the neighborhood does not 
t i th i i l i t itcontain the original point, map it 

inside Q and connect previous 
points with shortest paths.



Finding R
• If adding a point and a shortest 

path yields a self-intersection:
• The neighborhood around a 

previous point is crossed.
• We need to remap to a point• We need to remap to a point 

below the shortest path.
⇒ In the end we have found a simple 

l Rpolygon R.
⇒ Vertices of P are mapped to 

points in associated 
neighborhoods.

⇒ Hence, δF(P,R) ≤ ε .



Original Regions
• The neighborhoods of points can be split 
into multiple disjoint parts by R.
• We must choose one of these two regions 
to map a to. 

• Unfortunately an arbitrary choice may be invalidated by a later 
mapping of Rmapping of R.



Original Region
• The key idea is to map a point a’

on the same side  (relative to R) 
as a is to the preimage of  that 
portion of R. 
⇒ Original region



Conclusions:
• We presented the first algorithm for computing 
partial FD between surfaces.  This algorithm runs p g
in polynomial time.
• In the future it would be interesting to consider 

th i t f ti l FDother variants of partial FD.  
• It would also be interesting to consider 
extending this algorithm other classes of surfacesextending this algorithm other classes of surfaces


